Structures Cristallines des Polyphosphates de Cadmium–Lithium et de Mercure–Lithium $CdLi_2(PO_3)_4$ et $HgLi_2(PO_3)_4$

PAR M. T. AVERBUCH-POUCHOT, I. TORDJMAN ET J. C. GUITEL

Laboratoire des Rayons X, CNRS, 166-X, Centre de Tri, 38042 Grenoble Cédex, France

(Recu le 21 avril 1976, accepté le 3 mai 1976)

Lithium mercury polyphosphate, $HgLi_2(PO_3)_4$, is monoclinic with unit cell a=9.525, b=9.989, c=9.461 Å, $\beta = 92.01^{\circ}$, Z = 4. Space group is $P_{2_1/a}$. Lithium cadmium polyphosphate, CdLi₂(PO₃)₄, is orthorhombic, space group *Pnam*, with Z=4 and a very similar unit cell: a=9.495, b=10.15, c=9.375 Å. Both structures have been solved, the first one with a final R value 0.036 and the second one with R=0.07. The atomic arrangements of these two salts are very similar. The chain period is of four tetrahedra.

Introduction

Le polyphosphate de cadmium-lithium: $CdLi_2(PO_3)_4$, a été mis en évidence lors de la détermination du diagramme d'équilibre LiPO₃-Cd(PO₃)₂ par Averbuch-Pouchot & Durif (1969); le polyphosphate de mercure lithium: HgLi₂(PO₃)₄, lors de l'établissement du diagramme d'équilibre LiPO₃-Hg(PO₃)₂ par Raholison & Averbuch-Pouchot (1972). Bien que possédant des symétries différentes, ces deux sels ont des mailles très voisines. Le sel de cadmium-lithium est orthorhombique, *Pnam*, avec une maille a = 9,495 (3), b = 10,15 (1), c = 9,375 (3) Å renfermant quatre unités formulaires, tandis que le sel de mercure-lithium est monoclinique, $P2_1/a$, avec une maille a=9,525 (2), b=9,989 (3), c=9,461 (2) Å, $\beta = 92,01$ (1)° renfermant également quatre unités formulaires. Cette analogie de maille suggère que ces deux sels doivent posséder des arrangements atomiques très voisins. Tous deux sont des polyphosphates à longues chaînes.

$HgLi_2(PO_3)_4$

Techniques expérimentales

Le cristal utilisé était un fragment de prisme approximativement cubique d'arête moyenne 0,09 mm. 2335 réflexions ont été mesurées à l'aide d'un diffractomètre automatique Philips PW1100 fonctionnant à la

Tableau 1. Paramètres atomiques et coefficients de température isotropes B_{eq} pour HgLi₂(PO₃)₄

O(Lij) = oxygène de liaison P-O-P entre deux atomes de phosphore P(i) et P(i).

O(Eij) = oxygène extérieur à la chaîne et lié à l'atome de phosphore P(i).

	x	У	Ζ	B_{eq}
Hg	0,51198 (3)	0,30962 (4)	0,25329 (5)	1,1
P(1)	0,2275 (2)	0,4653 (2)	0,2366 (3)	0,7
P(2)	0,2996 (2)	0,1012 (2)	0,4940 (3)	0,8
P(3)	0,3027 (2)	0,9024 (2)	0,2674 (3)	0,8
P(4)	0,2944 (2)	0,1068 (2)	0,0359 (3)	0,8
O(E11)	0,1818 (7)	0,3270 (7)	0,2636 (9)	1,4
O(E12)	0,3828 (7)	0,4860 (7)	0,2415 (9)	1,3
O(L12)	0,1580 (7)	0,5636 (7)	0,3439 (8)	1,1
O(L14)	0,1588 (7)	0,5144 (9)	0,0930 (9)	1,6
O(E21)	0,1454 (7)	0,1146 (7)	0,4778 (8)	1,3
O(E22)	0,3947 (7)	0,2137 (7)	0,4612 (8)	1,4
O(L23)	0,8490 (7)	0,5320 (8)	0,4178 (8)	1,3
O(E31)	0,1485 (6)	0,8861 (7)	0,2567 (8)	1,1
O(E32)	0,3947 (7)	0,7843 (7)	0,2469 (9)	1,3
O(L34)	0,8518 (7)	0,4781 (8)	0,1683 (8)	1,3
O(E41)	0,1391 (7)	0,1167 (8)	0,0375 (8)	1,3
O(E42)	0,3822 (8)	0,2290 (7)	0,0342 (8)	1,3
Li(1)	0,004 (2)	0,832 (2)	0,390 (2)	1,5
Li(2)	0,005 (2)	0,827 (2)	0,104 (4)	2,5

Tableau 2. Facteurs anisotropes de température pour $HgLi_2(PO_3)_4$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Hg	268 (2)	293 (3)	336 (4)	116 (3)	17 (2)	11 (4)
P(1)	201 (20)	182 (20)	192 (28)	3 (15)	37 (16)	21 (17)
P(2)	224 (19)	192 (20)	240 (29)	22 (16)	41 (16)	15 (18)
P(3)	195 (19)	170 (18)	254 (28)	7 (15)	42 (17)	14 (18)
P(4)	266 (20)	207 (20)	200 (28)	5 (16)	10 (17)	1 (18)
O(É11)	455 (64)	162 (66)	530 (94)		63 (56)	104 (56)
O(E12)	262 (59)	235 (59)	606 (98)	39 (48)	68 (55)	16 (61)
O(L12)	409 (65)	267 (62)	205 (85)	47 (50)	-6(52)	- 58 (55)
O(E21)	274 (60)	310 (65)	460 (99)	65 (49)	-7 (54)	-17(60)
O(E22)	402 (64)	337 (75)	397 (94)	- 199 (51)	15 (55)	47 (58)
O(L23)	433 (68)	294 (67)	289 (95)	-61 (53)	- 77 (56)	44 (61)
O(E31)	208 (56)	261 (61)	440 (92)	- 63 (47)	68 (52)	- 22 (58)
O(E32)	390 (63)	216 (64)	449 (94)	96 (47)	1 (56)	- 53 (55)
O(L34)	376 (65)	490 (75)	162 (84)	-24(54)	59 (51)	-170 (63)
O(E41)	310 (63)	423 (73)	354 (95)	64 (53)	101 (56)	-41 (63)
O(E42)	540 (73)	250 (59)	306 (96)	- 81 (53)	- 12 (60)	81 (58)
O(L14)	303 (65)	764 (100)	190 (92)	-6 (61)	36 (53)	98 (75)
Li(1)	342 (152)	470 (210)	403 (225)	67 (137)	261 (132)	- 69 (186)
Li(2)	480 (188)	728 (271)	811 (294)	59 (191)	- 148 (177)	- 322 (265)

longueur d'onde de l'argent K $\alpha_1\alpha_2$ (0,5608 Å). Le balayage de chaque réflexion était effectué en ω sur un domaine de l°(θ) à la vitesse de 0,02° s⁻¹.

Trois références ont été mesurées toutes les deux

Tableau 3. Principales distances interatomiques (Å) et angles de liaison (°) dans HgLi₂(PO₃)₄

Octaedre HgO_6 Hg-O(E11) Hg-O(E12) Hg-O(E21)	2,116 (7) 2,149 (7) 2,551 (7)	Hg-O(E22) Hg-O(E41) Hg-O(E42)	2,488 (8) 2,520 (8) 2,509 (8)
Tétraèdres LiO ₄ Li(1)-O(E21) Li(1)-O(E22) Li(1)-O(E31) Li(1)-O(E32)	2,00 (2) 2,05 (2) 1,97 (2) 2,04 (2)	Li(2)-O(E41) Li(2)-O(E42) Li(2)-O(E31) Li(2)-O(E32)	1,97 (2) 1,98 (2) 2,04 (2) 2,07 (2)
Tétraèdres PO ₄	P(1)-O(E11) P(1)-O(E12) P(1)-O(L12) P(1)-O(L14)	1,473 (7) 1,493 (7) 1,574 (7) 1,565 (8)	
O(E11)-O(E12) O(E11)-O(L14) O(E11)-O(L12) O(L14)-O(E12) O(L12)-O(E12) O(L12)-O(E12) O(L12)-O(L14)	2,50 (1) 2,48 (1) 2,49 (1) 2,53 (1) 2,50 (1) 2,42 (1)	$\begin{array}{l} O(E11)-P(1)-O(E12)\\ O(E11)-P(1)-O(L14)\\ O(E11)-P(1)-O(L12)\\ O(L14)-P(1)-O(E12)\\ O(L14)-P(1)-O(L12)\\ O(L12)-P(1)-O(E12) \end{array}$	115,0 (4) 109,1 (4) 109,8 (4) 111,5 (4) 101,1 (4) 109,4 (4)
	P(2)-O(E21) P(2)-O(E22) P(2)-O(L12) P(2)-O(L23)	1,478 (7) 1,483 (8) 1,616 (8) 1,592 (8)	
O(E21)-O(E22) O(E21)-O(L12) O(E21)-O(L23) O(L12)-O(L23) O(L12)-O(E22) O(L23)-O(E22)	2,58 (1) 2,53 (1) 2,51 (1) 2,45 (1) 2,44 (1) 2,52 (1)	$\begin{array}{l} O(E21)-P(2)-O(E22)\\ O(E21)-P(2)-O(L12)\\ O(E21)-P(2)-O(L23)\\ O(E23)-P(2)-O(E22)\\ O(L23)-P(2)-O(L12)\\ O(L12)-P(2)-O(E22) \end{array}$	121,4 (4) 109,5 (4) 109,6 (4) 110,3 (4) 99,6 (4) 104,0 (4)
	P(3)-O(E31) P(3)-O(E32) P(3)-O(L23) P(3)-O(L34)	1,477 (6) 1,486 (7) 1,614 (8) 1,599 (8)	
O(E31)-O(E32) O(E31)-O(L23) O(E31)-O(L34) O(E32)-O(L34) O(E32)-O(L34) O(L23)-O(L34)	2,560 (9) 2,54 (1) 2,53 (1) 2,49 (1) 2,52 (1) 2,42 (1)	$\begin{array}{l} O(E31)-P(3)-O(E32)\\ O(E31)-P(3)-O(L23)\\ O(E31)-P(3)-O(L34)\\ O(L23)-P(3)-O(E32)\\ O(L23)-P(3)-O(L34)\\ O(L34)-P(3)-O(E32) \end{array}$	119,5 (4) 110,2 (4) 110,7 (4) 107,1 (4) 97,9 (4) 109,3 (4)
	P(4)-O(E41) P(4)-O(E42) P(4)-O(L34) P(4)-O(L14)	1,483 (7) 1,480 (8) 1,593 (8) 1,605 (9)	
O(E41)-O(E42) O(E41)-O(L14) O(E41)-O(L34) O(E42)-O(L14) O(E42)-O(L34) O(L14)-O(L34)	2,57 (1) 2,54 (1) 2,52 (1) 2,48 (1) 2,54 (1) 2,47 (1)	$\begin{array}{l} O(E41) - P(4) - O(E42) \\ O(E41) - P(4) - O(L14) \\ O(E41) - P(4) - O(L34) \\ O(L14) - P(4) - O(E42) \\ O(L14) - P(4) - O(L34) \\ O(L34) - P(4) - O(E42) \end{array}$	120,6 (4) 110,4 (4) 110,0 (4) 107,1 (4) 101,2 (4) 105,6 (4)
Distances P-P P(1)-P(2) 2, P(2)-P(3) 2, P(3)-P(4) 2, P(4)-P(1) 2,	907 (4) 924 (4) 994 (4) 941 (4)	Angles P-O-P P(1)-O(L12)-P(2) P(2)-O(L23)-P(3) P(3)-O(L34)-P(4) P(4)-O(L14)-P(1)	131,3 (5) 131,5 (5) 139,4 (5) 136,1 (6)

Fig. 1. Projection de la structure de HgLi₂(PO₃)₄ sur le plan ac.

Fig. 2. Projection de la structure de $CdLi_2(PO_3)_4$ sur le plan *ac*.

heures ($\overline{5}54$, $5\overline{54}$ et $\overline{7}30$). Aucune variation significative n'a été observée. Compte tenu des dimensions du cristal et de la longueur d'onde utilisée aucune correction d'absorption n'a été effectuée.

Tableau 4. Axes principaux des ellipsoïdes de vibration thermique

 U^2 = carrés moyens des amplitudes de vibration thermique (Å²), le long des axes principaux des ellipsoïdes. $\theta_a, \theta_b, \theta_c$: angles de ces axes avec les axes cristallographiques a, b et c.

	U (Å)	$\theta_a(^\circ)$	$\theta_b(^\circ)$	$\theta_{c}(^{\circ})$
Hg	0,139	52	39	83
U	0,123	96	95	7
	0,088	39	129	90
P(1)	0,104	53	60	53
	0,094	126	37	93
	0,086	122	109	37
P(2)	0,112	53	67	48
	0,097	105	137	50
D (2)	0,093	139	56	68
P(3)	0,111	66	/9	28
	0,092	93	02	101
P(4)	0,090	24	82	80
* (+)	0,102	98	8	89
	0.095	92	92	2
O(E11)	0,159	85	76	16
(0,153	22	112	91
	0,064	68	27	106
O(E12)	0,167	82	86	11
	0,116	48	43	99
	0,100	137	47	85
O(L12)	0,141	25	67	101
	0,117	115	37	115
$O(E^{21})$	0,089	93	63	2/
O(E2I)	0,140	61	105	18
	0,131	32	122	72 80
O(E22)	0,166	44	133	100
-()	0.134	77	89	15
	0,088	49	43	101
O(L23)	0,153	34	113	115
	0,116	62	28	85
0(50)	0,105	72	106	26
O(E31)	0,144	75	103	22
	0,119	113	30	71
O(E32)	0,087	28	04	99
O(E 32)	0,149	124	77	41 51
	0,137	115	27	80
O(L34)	0.168	99	24	112
- ()	0,131	12	79	87
	0,062	98	69	22
O(E41)	0,150	73	18	96
	0,138	55	95	38
	0,098	40	108	127
O(E42)	0,163	21	109	102
	0,126	71	59	40
O(L14)	0,094	81	38	126
O(L14)	0,198	12	9	81 70
	0,119	103	00	14
Li(1)	0,167	51	95	42
(-)	0,158	76	15	95
	0,064	43	103	131
Li(2)	0,233	104	132	45
-	0,155	51	131	115
	0,133	43	70	56

A C 32B - 3

Détermination de la structure

La structure a été déterminée par la méthode classique de l'atome lourd. Les atomes de mercure et de phosphore ont été facilement localisés grâce a la fonction de Patterson tridimensionnelle. Des synthèses de Fourier successives révèlent alors tous les atomes d'oxygène puis une synthèse de Fourier-différence permet de localiser les atomes de lithium. 1938 réflexions ($|F_a| > 10$) sur les 2335 mesurées ont été conservées pour les derniers cycles d'affinement. La valeur finale du facteur R s'établit à 0,036.*

Le Tableau 1 donne les coordonnées atomiques de cet arrangement et les facteurs B_{ea} . Le Tableau 2 rassemble les facteurs thermiques anisotropes. Tous les atomes occupent la position générale du groupe spatial $P2_1/a$.

Description de la structure

La Fig. 1 donne une projection de cet arrangement sur le plan ac. La maille est traversée par quatre chaînes, de période quatre tétraèdres, qui se développent parallèlement à la direction c. Les quatre tétraèdres indépendants de la chaîne ont approximativement tous la même orientation. Les cations associés assurant la cohésion entre les chaînes PO₃ forment également des chaînes, parallèlement à c, dans des plans perpendiculaires au plan ac en x=0 et $\frac{1}{2}$. Dans ces chaînes d'alternance Hg-Li-Li-Hg... les atomes de mercure possèdent une coordination octaédrique formée par six atomes d'oxygène extérieurs, de la chaîne phosphatée, les deux atomes de lithium, sont eux, entourés par quatre atomes d'oxygène du même type. Ces polyèdres de coordination mettent en commun des arêtes pour constituer la chaîne décrite plus haut.

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 31873: 20 pp., 1 microfiche). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 5. Paramètres atomiques et coefficients de température isotropes B pour CdLi₂(PO₃)₄

Les notations des atomes sont les mêmes que celles utilisées dans le Tableau 1.

	<i>x</i> (σ)	<i>y</i> (σ)	z (σ)	B (σ)
Cd	0,5136 (6)	0,3058 (4)	0,25	0,2 (1)
P(1)	0,226 (2)	0,487 (1)	0,25	0.7 (2)
P(2)	0,294 (1)	0,110 (1)	0,468 (1)	0,4 (1)
P(3)	0,304 (2)	0,898 (1)	0.25	0.8 (2)
O(É11)	0,143 (6)	0,354 (4)	0.25	6(1)
O(E12)	0,391 (5)	0,494 (4)	0,25	3 (1)
O(L12)	0.166 (3)	0.576 (2)	0.375 (2)	1.4 (5)
O(L23)	0,850 (3)	0,506 (3)	0.382(2)	2.1 (5)
O(E21)	0,146 (3)	0,121 (2)	0,449 (2)	1.0 (5)
O(E22)	0,385 (3)	0,229 (2)	0,439 (2)	1,1 (5)
O(E31)	0,155 (5)	0,884 (4)	0.25	2.5 (9)
O(E32)	0,392 (5)	0,778 (5)	0,25	4(1)
Lì	0,008 (10)	0,836 (4)	0,386 (4)	3 (1)

Tableau 6. Principales distances interatomiques (Å) et angles de liaison (°) dans CdLi₂(PO₃)₄

Octaèdre Co Cd-O(E21) Cd-O(E22) Cd-O(E11) Cd-O(E12)	iO ₆ 2,37 (2) 2,29 (2) 2,03 (5) 2,24 (5)	Tétraèdre LiO ₄ Li-O(E21) 2 Li-O(E22) 2 Li-O(E31) 1 Li-O(E32) 2	2,17 (6) 2,22 (6) 1,95 (8) 2,05 (8)
Fétraèdres PO₄	2 × P(1)–O(<i>L</i> P(1)–O(<i>E</i> P(1)–O(<i>E</i>	12) 1,58 (2) 11) 1,56 (6) 12) 1,57 (5)	
$\begin{array}{l} 2 \times O(L12) - O(E11) \\ 2 \times O(L12) - O(E12) \\ O(E12) - O(E11) \\ O(L12) - O(L12)' \end{array}$	2,55 (5) 2,58 (6) 2,75 (8) 2,33 (2)	$\begin{array}{c} 2 \times O(L12) - P(1) - O(E11) \\ 2 \times O(L12) - P(1) - O(E12) \\ O(L12) - P(1) - O(L12)' \\ O(E11) - P(1) - O(E12) \end{array}$	108 (4) 110 (4) 91 (1) 113 (6)
	P(2)-O(<i>E</i> P(2)-O(<i>E</i> P(2)-O(<i>L</i> P(2)-O(<i>L</i>	21) 1,56 (3) 22) 1,51 (2) 23) 1,51 (3) 12) 1,42 (2)	
O(L12)-O(E22) O(L12)-O(L23) O(L12)-O(E21) O(E21)-O(L23) O(E21)-O(E22) O(E22)-O(L23)	2,38 (2) 2,43 (3) 2,48 (3) 2,41 (4) 2,52 (4) 2,46 (3)	O(E22)-P(2)-O(L23) O(L23)-P(2)-O(L12) O(L12)-P(2)-O(E22) O(L12)-P(2)-O(E21) O(E22)-P(2)-O(E21) O(L23)-P(2)-O(E21)	109 (2) 104 (2) 102 (2) 112 (2) 118 (3) 110 (3)
	2 × P(3)–O(<i>L</i> P(3)–O(<i>E</i> P(3)–O(<i>E</i>	23)1,64 (2)(31)1,42 (5)(32)1,48 (5)	
$\begin{array}{c} 2 \times O(L23) - O(E32) \\ O(L23) - O(L23)' \\ 2 \times O(L23) - O(E31) \\ O(E32) - O(E31) \end{array}$	2,55 (5) 2,48 (3) 2,50 (5) 2,50 (7)	$\begin{array}{c} 2 \times O(L23) - P(3) - O(E32) \\ 2 \times O(L23) - P(3) - O(E31) \\ O(L23) - P(3) - O(L23) \\ O(E31) - P(3) - O(E32) \end{array}$	109 (2 109 (3 7 98 (2 121 (5
Distances P-F P(1)-P(2) P(2)-P(3)	2,93 (1) 2,96 (1)	Angles P-O-P P(1)-O(L12)-P(2) P(2)-O(L23)-P(3)	137 (1) 130 (1)

Le Tableau 3 donne les principales distances interatomiques et angles de liaison dans cet arrangement. Le Tableau 4 donne les axes principaux des ellipsoïdes de vibration thermique.

$CdLi_2(PO_3)_4$

Techniques expérimentales

Le cristal utilisé était un prisme allongé de section carrée dont les dimensions étaient $0,08 \times 0,08 \times 0,40$ mm. 313 réflexions ont été mesurées par la méthode de Weissenberg, en utilisant la technique des films multiples. La longueur d'onde utilisée était celle du molybdène K α . Compte tenu des dimensions du cristal ($\mu R =$ 0,26) aucune correction d'absorption n'a été effectuée. Les mesures étaient effectuées visuellement à l'aide d'une échelle d'intensité de 18 taches. Ces données ont été corrigées du facteur de Lorentz-polarisation et du dédoublement $\alpha_1\alpha_2$.

Détermination de la structure

La résolution de cette structure, bien antérieure à la précédente (Averbuch-Pouchot, 1974) a été réalisée à l'aide de quelques sections de Patterson permettant de localiser les atomes de cadmium et de phosphore suivies de projections de Fourier. Les affinements conduisent à un facteur R un peu inférieur à 0.07 pour l'ensemble des réflexions.

Le Tableau 5 donne les coordonnées cristallographiques de cet arrangement dans le groupe spatial *Pnam*, et les facteurs de température isotropes.

Description de la structure

L'arrangement atomique de $CdLi_2(PO_3)_4$ est, comme le laissait prévoir l'analogie des mailles et des formules chimiques, très voisin de celui de $HgLi_2(PO_3)_4$ décrit plus haut. La présence de plans miroir perpendiculaires aux chaînes phosphatées et aux chaînes formées par les polyèdres de coordination des cations associés ne modifie pas sensiblement leur aspect général. La Fig. 2 donne une projection sur le plan *ac* de l'ensemble de cet arrangement. Le Tableau 6 donne les principales distances interatomiques et angles de liason dans cet arrangement.

Références

- AVERBUCH-POUCHOT, M. T. (1974). Thèse, Univ. de Grenoble, France.
- AVERBUCH-POUCHOT, M. T. & DURIF, A. (1969). Mater. Res. Bull. 4, 859–869.
- RAHOLISON, C. & AVERBUCH-POUCHOT, M. T. (1972). C. R. Acad. Sci. Paris, Sér. C, 274, 1066–1068.